
U7. String List Utility Commands
    An important subset of ViewIt utility commands are those used to manipulate "string lists" An important subset of ViewIt utility commands are those used to manipulate "string lists" 
(STR#-type resources or any relocatable block with a similar structure).    String lists contain (STR#-type resources or any relocatable block with a similar structure).    String lists contain 
Pascal-type strings packed together in a list:Pascal-type strings packed together in a list:

[2-byte count][length byte][text][length byte][text]...[2-byte count][length byte][text][length byte][text]...
Although this is a very efficient way to store strings, the only toolbox call, GetIndString, Although this is a very efficient way to store strings, the only toolbox call, GetIndString, 
available for use with such string lists simply returns a particular string from an STR#-type available for use with such string lists simply returns a particular string from an STR#-type 
resource.resource.
    The four ViewIt commands GetStr, SetStr, SrtLst, and DupLst allow you to easily     The four ViewIt commands GetStr, SetStr, SrtLst, and DupLst allow you to easily 
manipulate string lists.    For example, to set STR# 1040 equal to the first 10 elements of manipulate string lists.    For example, to set STR# 1040 equal to the first 10 elements of 
STR# 1030, you could write,STR# 1030, you could write,
 FaceIt(nil,SetStr,1040,-1,0,0); clear list FaceIt(nil,SetStr,1040,-1,0,0); clear list
 for i:= 1 to 10 do for i:= 1 to 10 do

 begin begin
get ith string from STR# 1030get ith string from STR# 1030

    FaceIt(nil,GetStr,1030,i,0,0);    FaceIt(nil,GetStr,1030,i,0,0);
set ith string in STR# 1040set ith string in STR# 1040

    FaceIt(nil,SetStr,1040,i,0,0);    FaceIt(nil,SetStr,1040,i,0,0);

 end; end;
where each string being copied goes through the uString variable.    String lists can also be where each string being copied goes through the uString variable.    String lists can also be 
dynamically created and disposed of without the need for STR# resources.    For example, to dynamically created and disposed of without the need for STR# resources.    For example, to 
copy the contents of STR# 1030 into a new string list handle, you could write: copy the contents of STR# 1030 into a new string list handle, you could write: 

FaceIt(nil,DupLst,1030,0,0,0);FaceIt(nil,DupLst,1030,0,0,0);

myList := uResult;myList := uResult;
where a handle to the new list is returned in uResult and saved in "myList".    Such a list where a handle to the new list is returned in uResult and saved in "myList".    Such a list 
handle can then be used with other string list commands.    For example,handle can then be used with other string list commands.    For example,

FaceIt(nil,SetStr,myList,0,0,-1);FaceIt(nil,SetStr,myList,0,0,-1);
would cause ViewIt to dispose of the dynamically allocated "myList" string list.would cause ViewIt to dispose of the dynamically allocated "myList" string list.
    In some cases you may need to determine the number of strings which are currently in a     In some cases you may need to determine the number of strings which are currently in a 
list.    The first two bytes of the copy of the string list in memory contains this value.    For list.    The first two bytes of the copy of the string list in memory contains this value.    For 
example, using Language Systems FORTRAN, where "n" is the number of strings in the list, example, using Language Systems FORTRAN, where "n" is the number of strings in the list, 
"resID" is an STR# ID, and "strHdl" is the handle to a string list,"resID" is an STR# ID, and "strHdl" is the handle to a string list,
 strHdl = GetResource(%val('STR#'),%val(resID)) strHdl = GetResource(%val('STR#'),%val(resID))
 n = word(long(strHdl)) n = word(long(strHdl))
or, using Pascal, where the type "word" is declared as a pointer to an integer,or, using Pascal, where the type "word" is declared as a pointer to an integer,
 word = ^integer; word = ^integer;
 ... ...
 strHdl := GetResource('STR#',resID); strHdl := GetResource('STR#',resID);
 n := word(strHdl^)^; n := word(strHdl^)^;
or, using C,or, using C,
 strHdl = GetResource('STR#',resID); strHdl = GetResource('STR#',resID);
 n = *(short*)(*strHdl); n = *(short*)(*strHdl);

    The following commands use parameter a to designate a string list to manipulate.        The following commands use parameter a to designate a string list to manipulate.    
Parameter a can refer to either an existing STR#-type resource or to any relocatable block inParameter a can refer to either an existing STR#-type resource or to any relocatable block in
memory having the structure of a string list.    CAUTION:    A string list that is not based on anmemory having the structure of a string list.    CAUTION:    A string list that is not based on an
STR# resource must still have the structure of a string list.    An "empty" string list, for STR# resource must still have the structure of a string list.    An "empty" string list, for 



example, is not a 0-byte relocatable block created with the toolbox call NewHandle, but example, is not a 0-byte relocatable block created with the toolbox call NewHandle, but 
rather a 2-byte block containing the value zero.rather a 2-byte block containing the value zero.

Name    Number    Parameters & Variables used
GetStr    491    a,b,c,d,uString,uName
    Gets a string or substring from a string list, uString, or uName, returning it in uString.Gets a string or substring from a string list, uString, or uName, returning it in uString.
    a = STR# resource ID of an existing string list resource    a = STR# resource ID of an existing string list resource
        or a handle to an existing string list block in memory        or a handle to an existing string list block in memory
        or 0 = use uString or uName as source string        or 0 = use uString or uName as source string
    b = number of string in list to get    b = number of string in list to get
        or 0 or 1 = use uString (if a = 0)        or 0 or 1 = use uString (if a = 0)
        or 2 = use uName (if a = 0)        or 2 = use uName (if a = 0)
        or other = address of a Pascal string (if a = 0)        or other = address of a Pascal string (if a = 0)
    c = number of substring within string to get    c = number of substring within string to get
        or 0 = return entire string (- d leading characters)        or 0 = return entire string (- d leading characters)
    d = ASCII character number used to delimit substrings    d = ASCII character number used to delimit substrings
                  (“,” = 44, “:” = 58, “;” = 59, etc.)                  (“,” = 44, “:” = 58, “;” = 59, etc.)
        or number of leading characters to skip (if c = 0)        or number of leading characters to skip (if c = 0)

SetStr    492    a,b,c,d,uString,uResult
    Adds, deletes, or inserts strings in string lists.    Where necessary, empty strings are added Adds, deletes, or inserts strings in string lists.    Where necessary, empty strings are added 
to the string list.    Note that uString is preserved across calls to SetStr.to the string list.    Note that uString is preserved across calls to SetStr.
    a = STR# resource ID of an existing string list resource    a = STR# resource ID of an existing string list resource
        or a handle to an existing string list block in memory        or a handle to an existing string list block in memory
        or, if a = 0, a new string list is created and its handle is        or, if a = 0, a new string list is created and its handle is

returned in uResult (save this handle for later use)returned in uResult (save this handle for later use)
    b = scope of changes to make    b = scope of changes to make
      -1 = clear all strings in the list      -1 = clear all strings in the list
          0 = don't change any of the strings          0 = don't change any of the strings
          n = nth string in list to manipulate          n = nth string in list to manipulate
    c = type of changes to make    c = type of changes to make
      -1 = delete nth string from list      -1 = delete nth string from list
          0 = replace nth string in list with uString          0 = replace nth string in list with uString
          1 = insert uString at nth string position          1 = insert uString at nth string position
    d = memory and disk options (disk operations are skipped if not working with an STR#     d = memory and disk options (disk operations are skipped if not working with an STR# 
resource)resource)
      -2 = delete copy of string list from memory w/o updating      -2 = delete copy of string list from memory w/o updating
      -1 = update copy of string list in memory and on disk,      -1 = update copy of string list in memory and on disk,
                        then delete the string list from memory                        then delete the string list from memory
          0 = update copy in memory only          0 = update copy in memory only
          1 = update both copy in memory and on disk          1 = update both copy in memory and on disk
You should, in general, minimize the number of calls made to update a copy of an STR# list You should, in general, minimize the number of calls made to update a copy of an STR# list 
on disk since this step involves saving the entire STR# resource back to disk.    In other on disk since this step involves saving the entire STR# resource back to disk.    In other 
words, if you have a loop which results in many SetStr calls, then don't ask ViewIt to update words, if you have a loop which results in many SetStr calls, then don't ask ViewIt to update 
the disk copy (d = 1) until changes to the list in memory are complete.    There will often the disk copy (d = 1) until changes to the list in memory are complete.    There will often 
simply be no need to update the disk copy.simply be no need to update the disk copy.

SrtLst    493    a,b
    Sorts (alphabetizes) the list whose resource ID or handle is given by a.    Parameter b can Sorts (alphabetizes) the list whose resource ID or handle is given by a.    Parameter b can 
be used to designate the number of leading characters to ignore when comparing strings in be used to designate the number of leading characters to ignore when comparing strings in 
the list.the list.



DupLst    494    a,b,c,d,uResult
    Copies the list designated by parameter a to that designated by b, where a and b are Copies the list designated by parameter a to that designated by b, where a and b are 
either STR# IDs or handles to string lists.    If b is zero, then a new destination string list either STR# IDs or handles to string lists.    If b is zero, then a new destination string list 
block is dynamically allocated and its handle returned in uResult.    Parameter c can be used block is dynamically allocated and its handle returned in uResult.    Parameter c can be used 
to add or remove leading characters as each string is copied.    If c is positive, then c to add or remove leading characters as each string is copied.    If c is positive, then c 
characters whose ASCII value is given by d are added to each string. If c is negative, then c characters whose ASCII value is given by d are added to each string. If c is negative, then c 
characters are removed from the beginning of each copied string. If a = b, then the source characters are removed from the beginning of each copied string. If a = b, then the source 
string list is simply modified according to c and d.string list is simply modified according to c and d.


