U7. String List Utility Commands

An important subset of Viewlt utility commands are those used to manipulate "string lists"
(STR#-type resources or any relocatable block with a similar structure). String lists contain
Pascal-type strings packed together in a list:

[2-byte countlflength bytel[texti[length byte][text]...

Althouah this is @ very efficient way to store strings, the only toolbox call, Getlndstring,
available for use with such string lists simply returns a particular string from an STR#-type
resource.

The four Viewlt commands GetStr, SetStr, Srtlst, and DupLst allow you to easily
manipulate string lists. For example, to set STR# 1040 equal to the first 10 elements of
STR# 1030, you could write

Facelt(nil,SetStr,1040,-1,0,0); clear [ist
for i:= 1 to 10 do

begin
get ith string from STR# 1030

Facelt(nil,GetStr,1030,i,0,0):
set [th string in STR# 1040

Facelt(nil.SetStr,1040,1,0,0);

end;

where each string being copied goes through the uString variable. String lists can also be
dynamically created and disposed of without the need for STR# resources. [For example, to
copy the contents of STR# 1030 into @ new string list handle, you could write:

Facelt(nil,Duplst,1030,0,0,0);

mylList := uResult;
where g handle to the new list is returned (n uResult and saved in "mylList". Such & list
handle can then be used with other string list commands. [For example,

Eacelt(nil, SetStr.myList,0,0,-1);
would cause Viewlt to dispose of the dynamically allocated "myList" string list.

In some cases you may need to determine the number of strings which are currently in a
list. The first two bytes of the copy of the string [ist in memory contains this value. For
example, using Language Systems FORTRAN, where "n" is the number of strings in the list,
"resID" is an STR# ID, and "strHd[" is the handle to a string list,
strHdl = GetResource(%val('STR#"), %val(resiD))

n = word(lonag(strHdl))
or, using Pascal, where the type "word" js declared as a pointer to an integer,
word = “integer;

strHd| := GetResource('STR#' . res|D):
n := word(striHdl™)*:

or, using C,

striHdl = GetResource('STR#",resID);
n = *(short*)(*strHdl);

The followina commands use parameter a to designate a string list to manipulate.
Parameter @ can refer to either an existing STR#-type resource or to any relocatable block in
memeory having the structure of a string list, CAUTION: A string list that is not based on an
STR# resource must still have the structure of a string list. _An "empty" string list, for

example, is not a 0-byte relocatable block created with the toolbox call NewHandle, but
rather a 2-byte block containing the value zero.

Name Number Parameters & Variables used

GetStr 491 a,b,c,d,uString,uName
Gets a string or substring from a string list, uString. or uName, returning it in uStrinag.
8 = STR# resource ID of an existing string list resource
or & handle to an existing strina list block in memory
or 0 = use uString or uName as source string
b = number of string in list to get
or 0 or 1 = use uString (if a = Q)
or 2 = use uName (if a = 0)
or other = address of a Pascal string (if @ = 0)
¢ = number of substring within string to get
or 0 = return entire string (- d leading characters)
d = ASCII character number used to delimit substrings
(“” =44, “:” =58, “:" = 59, etec.)
or number of leading characters to skip (if c = 0)

SetStr 492 a,b,c,d,uString,uResult
Adds, deletes, or inserts strings in string lists. Where necessary, empty strinags are added

to the string list. Note that uString Is preserved across calls to SetStr.
a = STR# resource |D of an existina strina list resource
or a handle to an existing string list block in memory
or, if @ = 0, @ new string list is created and its handle is

returned in uResult (save this handle for later use)
b = scope of changes to make
-1 = clear all strings in the list
0 = don't change any of the strings
n = nth string in list to manipulate
¢ = type of changes to make
-1 = delete nth string from list
0 = replace nth string in list with uString
1 = insert uString at nth string position
d = memory and disk options (disk operations are skipped if not working with an STR#
resource)
-2 = delete copy of string list from memory w/o updating
-1 = ypdate copy of string list in memory and on disk.
then delete the string list from memory
0 = update copy in memory only
1 = update both copy in memeory and on disk
You should, in general, minimize the number of calls made to update a copy of an STR# list
on disk since this step involves saving the entire STR# resource back to disk. In other
words, if you have a loop which results in many SetStr calls, then don't ask Viewlt to update
the disk copy (d = 1) until chanages to the list in memory are complete. There will often
simply be no need to update the disk copy.

SrtLst 493 a,b

Sorts (alphabetizes) the list whose resource D or handle is given by a. Parameter b can
be used to designate the number of leading characters to ignore when comparing strings in
the [ist,

DupLst 494 a,b,c,d,uResult

Coples the list designated by parameter a to that designated by b, where a and b are
either STR# IDs or handles to string lists. [f b is zero, then a new destination string list
block is dynamically allocated and its handle returned in uResult. Parameter ¢ can be used
to add or remove leading characters as each string is copied. If ¢ is positive, then ¢
characters whose ASCII value is given by d are added to each string. If ¢ is negative, then ¢
characters are removed from the beginning of each copied string. If @ = b, then the source
string list is simply modified according to ¢ and d.

